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Modes in Dielectric-Loaded Waveguides and
Resonators

KAWTHAR A. ZAKI AND ALI E. ATIA, SENIOR MEMBER, IEEE

Abstract -Analysis of norsaxially symmetric modes in circular wave-

guides partially filled with high-dielectric constant material is presented. A
method for the accurate determination of resonant frequencies of any mode

excited in dielectrically loaded wavegnide cavities is described. TIte method

is used to construct mode charts for dielectric resonators. Comparison of

the resonant frequency calculations for several cases agrees closely with

measurements.

I. INTRODUCTION

T HE RECENT AVAILABILITY of low-loss, temper-

ature-stable high-dielectric constant materials [1] has

generated increased interest in the utilization of such

materials in several microwave components. Major factors

in the use of high-dielectric constant materials are the

miniaturization of the components, lower manufacturing

and production costs, and the potential compatibility with

microwave integrated circuits (MIC’S) and monolithic mi-

crowave integrated circuits (MMIC’S). One of the most

interesting applications of dielectric resonators is in high-

quality dual mode bandpass filters [2]. The design of such

filters requires the accurate computation of the resonant

frequency of practical resonator configurations. Although

several authors [3]–[6] have presented methods for the

computation of the resonant frequencies of dielectric reso-

nators excited in axially symmetric modes (i.e., TE018 or

TM018 modes), taking into account mounting structures

and enclosures, there is virtually no treatment of other

nonaxially symmetric modes in the literature. Properties of

these modes are required for successful design of resona-

tors, both when these modes are in the design, or when

they are potentially excited as spurious modes.

This paper describes a rigorous method for the computa-

tion of the resonant frequencies and fields of dielectric

resonators excited in nonaxially symmetric modes. The

analysis of axially symmetric and hybrid modes in partially

filled infinite waveguides is reviewed in Section II, since

the properties of these modes are required for the subse-

quent treatment of the resonant modes. The method of

computing the resonant frequencies of dielectric resonators

enclosed in circular waveguides is described in Section III.

This method is applied to construct mode charts for reso-

nators of typical parameters. Results on the computation
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Fig. 1, Dielectncally loaded waveguide.

of the resonant frequencies of several resonators are pre-

sented in Section IV, together with a mode chart for a

representative case.

II. MODES IN DIELECTRIC-LOADED CIRCULAR
WAVEGUIDES

This section summarizes the results of solving Maxwell’s

equations in a circular waveguide partially filled with a

dielectric material. The circular waveguide of infinite ex-

tent has radius b, and is axially loaded with a concentric

dielectric of circular cross section, radius a, and relative

dielectric constant 6,1, as shown in Fig. 1. The space

between the perfectly conducting wall of the waveguide

and the dielectric core is filled with another dielectric of
relative permittivity .s,2<< c,,. The electromagnetic fields

which can exist within this structure are (see, for example,

[7]-[9]): 1) transverse electric modes with no angular varia-

tion of the fields (TEOwl modes), 2) transverse magnetic

modes with no angular variation of the fields (TMO~

modes), and 3) hybrid modes which have both axial electric

and magnetic fields and angular variation of the fields

(HE~~ modes, m, n #“ O).

Suppressing the axial propagation factor e -‘z and time

variation factor eJ’”~, the solution to the boundary value

problem leads to the field components of the HEfi~ modes
given below.

For O<r<a

E,, = AJH(&lr)cosn+ (la)
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(If)

(2a)

(2b)

(2C)

(2d)

[

– A nk~R. (J2r)
jwH,, = ~: 1–ay{2P~(f,r ) sin no (2e)

r

A

[

aynPn({2r)
jupHq, = ~ – k;{2R; (@)+ r

{2 1
cos n~ (2f)

where A is an arbitrary constant, and

.$; =k:+y2, {;=-(k:+y2)

kf = c,,k; , k;= c,lk:, k; = U21.LOC0

and J.(.), I.(”), and K.(. ) are the Bessel functions, and

modified Bessel functions of the first and second kinds,

respectively.

The characteristic equation for the normalized radial

wavenumber x.* = ~la (from which the propagation con-

stant y can be computed) is

where

Wn =

(3)

The characteristic equations for the propagation con-

stants of the axially symmetric modes (TEO~ and TMO~ )

are given, respectively, by

WO= O (TEO~ modes)

VO= o (TMO~ modes).

The nonvanishing components of these axially symmetric

modes are given below.

TEOW modes:

For O<r<a

Hz, = AJO(&lr)

@AJ((&lr)
‘+’ = ‘$,

‘AJJ(tlr).
‘“= ‘&

Fora<r<b

H = _ A {2 J;($1a) p ~{2r)
22 &lJO(&a) 0

J(( $Ia )
P(({2r)E+, = j“@ flJ&$la)

– Y J(($la) p/({2r)

“2= gl Jo(&la) 0 “

TMO. modes:

For O<r<a

E,, = AJo(flr)

– Ay
—J~($lr)%,= &

‘AJ~(<lr).%1= $,

ForaGrGb

Ez, =ARo(f2r)

E,, = AxR~({2r)
!&

H+, = ~R:({2r).

(4a)

(4b)

(4C)

(5a)

(5b)

(5C)

(6a)

(6b)

(6c)

(7a)

(7b)

(7C)

III. DIELECTRIC-LOADED WAVEGUIDE RESONATORS

Waveguide cavities are usually used in applications

requiring high-Q microwave resonators. Waveguide com-

ponents are generally bulky, heavy, and expensive to

manufacture due to the high precision required in their

machining operations. A means for the potential size re-
duction of the resonators is to fill them with a high-dielec-

tric constant, low-loss material. The reduction in the linear

dimensions of the components would be proportional to

&. The metallic enclosure losses, however, would increase

considerably, since the surface area in which the currents

flow are reduced by e,. Alternatively, the enclosure con-

ducting walls can be made remote from the resonator
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tangential to the end face z = ~ L/2, are expressed as

Iz

‘r 1%’%2%3

Fig. 2. Dielectric-loaded circular cavity.

which would contain most of the fields. This allows the

ohmic losses in the enclosure walls to be significantly

reduced. The resonator fields and resonant frequencies in

this case are generally significantly different from what

would exist in a full resonator.

In this section, a method is presented for the accurate

determination of the resonant frequency of the structure

shown in Fig. 2. The cavity of radius b and length L has

perfectly conducting walls. The high relative dielectric con-

stant cylinder (c,,) has radius a and length 1, and is

supported by low relative dielectric constant support (e,,)

(e.g., foam). This support can conveniently be made as two

half-cups, between which the resonator is sandwiched. Al-

ternatively, the end supports can be of different dielectric

constant material (c,,), as shown in Fig. 2.

To compute the resonant frequency, the structure is

divided into three regions: A, B, and C, as indicated in Fig.

2. In each of these regions, the total fields are expressed in

terms of a linear combination of the appropriate normal

waveguide modes. The transverse electric and magnetic

fields are then matched at the boundaries z = ~ 1/2. This

results in an infinite set of linear homogeneous equations.

Resonant frequencies of the structure are determined by

equating to zero the determinant of a truncated subset of

these equations.

The normal modes in the end regions (A and C) are the

usual TE and TM modes in a circular waveguide [10].
Region B fields are those described in the previous section.

The angular variation of the fields of a particular resonant

mode must be the same in all three regions. The transverse

fields in each of the three regions A, B, and C, which

satisfy the boundary conditions of vanishing electric field

“

where y,, ei,

EA = ~aii?isinhy, (L/2+ z) (8a)
i

H,, =-~al~lcoshyi(L,/2 +z) (8b)
1

i

Ec = ~b,2, sinhy, (L/2– z) (lOa)
1

Ifc= ~b,k,coshy, (L/2– Z) (lOb)
i

and ~, are the propagation constants, trans-

verse electric, and magnetic fields of the normal modes

(i.e., TE or TM modes) in the circular waveguide of radius

b, respectively, and yi, El, and H, are the propagation

constants, transverse electric, and magnetic fields of the

(hybrid) modes in the dielectric loaded ~aveguide, respec-

tively. The yi’s are roots of (3), while E, and H, are the

fields given by (1) and (2).

Boundary conditions to be satisfied by the fields of

(8)-(10) are that the transverse electric and magnetic fields

be continuous at z = + //2, i.e., at z = – //2

EA=EB, HA=HB (ila)

and at z = 1/2

EB=EC, HB=HC. (llb)

Taking the dot product of each of the electric field

equations (Ila) and (llb), with .2,, and the magnetic field

equations with ~j and integrating over the waveguide cross

section, using the orthogonality relations of the normal

modes [10], the following set of homogeneous linear equa-

tions result:

a,sj = ~ (A,eYl{i2 + B,e–y,llz )(~z,2J) (12a)
1

—ale, = ~ (AZeY,(/2 — B,e ‘7(112 )(fiZ, kj) (12b)
i

b,s~ = ~ (Ale ‘Y11/2 + BzeYJ/2)(j,, Zj) (12C)
i

bjc~ = ~ (Ale ‘YI’/2 – BieY’’/2)(fi,, ~~) (12d)
i

where

(E,, G1)=~,.;; dS (13a)

(H,, ~J)=jH,. &dS (13b)
s

L–1

() ()

L–1
Sj = sinhyj ~ , Cj = coshyl ~ .

Analytic expressions for the inner product terms of (13a)

and (13b) are given in the Appendix.

The a~’s and bj’s can be easily eliminated from
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(12a)-(12d), leaving the system of equations only in Al’s

and B,’s

x( L4+qA)=o (14a)

&i4+wt)=o (14b)
I

where

~1 = eYf/2 [CJ(2Z, 2,) + s,(H,, t,)] (15a)

~, =e-Y’12[c,(fi,,4,) -S,(ti[,~ J)]. (15b)

The resonant t’requencies of the structure are the roots of

the equation

[1

det x Y GO

Yx
(16)

where the element values of the submatrices X and Y ( Xjl

and L,) are given by (15a) and (1519). In practice, the

infinite matrices X and Y are truncated at a certain number

N of normal waveguide and hybrid modes. Then the

frequency is varied and the value of the determinant in (16)

is computed for each frequency. The frequencies giving

zero value of the determinant are approximations to the

resonant frequencies. The size of the determinant N can be

varied, and the process can be repeated to establish the

convergence.

A flow chart of a computer program that implements

this procedure is shown in Fig. 3. This program uses the

bisection method to compute the resonant frequencies,

once the upper and lower bounds on the values of the

frequencies are known. Such bounds are easily estimated

using the dielectric-loaded waveguide model shorted at

both ends with lengths 1 and L for the upper and lower

bounds, respectively.

The frequencies obtained by this method are the reso-

nances of the structure in various modes. Thus, “mode

charts” can be constructed which show the variation of

various resonant frequencies with the parameters of the

resonator (e.g., diameter and length of the dielectric, diam-

eter and length of the cavity, etc.). When only one hybrid

and one normal waveguide mode are taken (i.e., i%’= 1),

(16) reduces to

tanh yl =
–sinhy(L – 1)

(Z>4) ~oshzy( zL–1) ~ (A,A) ~inh’y(L–l) “

(h> A) {E, 2) 2

(17)

This equation gives the exact values of the resonant fre-

quencies when L =1.

An interesting interpretation of (17) can be made in a

simple way by considering the “equivalent circuit” shown

in Fig. 4. In this figure, the transmission line of length 1,

characteristic impedance 20, and propagation constant y

represent the hybrid mode in the loaded waveguide, while

the lines of lengths (L – 1)/2, characteristic impedances

2., and propagation constants y represent the normal

0a, b, L,~, Er,,
INPUT RESONATOR PARAMETERS,
DESIRED MODE (n,m) & MAXIMUM Er2,0,m

DETERMINANT SIZE Nmax N ma.
ESTIMATE LOWER & UPPER BDUNDS
f, k fz OF RESONANT FREOUENCY
DF DESIRED MODE m

LQ-J

COMPUTE Vi
DETERMINANT

w

U* . uet[r~

m

CHECK TO INSURE R,,,, D2., >OT fl ,f ‘q;f
APPROPRIATE BOUNDS

F

L r

Fig. 3. Flow chart of a computer program for resonant frequency

calculations.

=

++_+.+—

Fig. 4. Equivalent circuit of a dielectric-loaded resonator.

waveguide mode, terminated in short circuits at their ends.

Using the transmission-line equations, it can be easily

shown that the resonant frequencies of the circuit of Fig. 4

are given by (17), provided that

z~ (-!$,2).—
-%) (IY,i) “

(18)

IV. ~suLTs

Accuracy of the computer program developed for the

solution of the characteristic equation was verified by using

the program to find the roots of the equation with c,, = c.,,
which corresponds to a completely full waveguide. Thes-e

roots (&l b) agreed with the TE and TM normal mode

wavenumbers (i.e., roots of J~’(.x) = O or .7.(x) = O) to six

decimal places.

Properties of the modes in an infinite waveguide axially

loaded with a dielectric are first explored by investigating

the characteristic equation (3). Since the highly tempera-
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Fig. 5. Effect of the waveguide radius on the HE1l mode cutoff wave-

numbers.

TABLE I
Room OF THE CHARACTERISTIC EQUATION FOR TEO~, TMO~,

AND HE.., MODES

Mode

% 1

‘“o 1

‘E2 I

‘Eo 1

‘El 2

‘E13

‘E22

‘“0 2

Root

2.2607

3.4542

3.6865

3.7863

4.4053

5.3516

5.8555

5.8988

Mode

‘E23

‘E31

‘E02

‘E14

‘E32

‘E24

’03

‘E15

‘E33

Root

6.6963

6.7949

7.0296

7.1294

8.0237

8.2617

8.4158

8.5313

9.3281

~ = 0.394,,, b = 0.5”, koa = 0.8384”

ture-stable dielectric materials commercially available have

relative dielectric constants in the range 35–40, a typical

value of C,l = 37.6 is used in the calculations. The first few

roots (flu) of the characteristic equation (3) for a typical

set of parameters are given in Table I. Variation of the

cutoff wavenumber (&la) of the hybrid HEII mode with

the ratio (b/a) is shown in Fig. 5. As seen in this figure,

when b/a =1, the waveguide is completely full of dielectric

and the mode is TEII with cutoff wavenumber 1.841. As

the waveguide diameter is increased, the cutoff wavenum-

ber of the HEII mode increases rapidly and peaks around

(b/a) =1.07. In the range (b/a)< 1.3, the effect of the

conducting walls on the fields is significant due to their

proximity to the dielectric. For (b/a)> 1.5, the cutoff

wavenumber of the HEII mode is virtually independent of

(b/a), indicating the fields are almost entirely con-

centrated within the dielectric core, and only weak evanes-

cent fields exist near the conducting walls. This is also
illustrated in the. w - ~ diagram of Fig. 6 for the hyrid

HEII mode. Thus, in the design of the HEII mode resona-

tor with relative dielectric constants in the range of 35~40,

the waveguide radius b should be generally chosen greater

than 1.5 X the dielectric radius a to minimize the waveguide

conductor loss.
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Fig. 6. Omega–beta diagrams for the HEII mode.
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Fig. 7. Mode chart for a dielectric-loaded waveguide resonator.

TABLE II

COMPUTED AND MEASURED ‘RESONANT FREOU~NCIES OF’SEVERAL
REsONATORs ‘

a “

.394

.341

.315

.268 I.5 .315

.5 .319

.5 .272

.5 .220

L“

.6

.83

.56

.48

s
‘1

37.6

37.25

37.6

38.2

Freq,

(Measured)
MHZ

3368

3928

4196

4994

mcy
(Ckmp.ted)

Mik

3371

3930

4192

5001

A mode chart for a dielectric-loaded cavity of the same

parameters given in Table I, with 1= L, is shown in Fig. 7.
The plots of ( ~D)2 versus (D/L )2, where D = 2a is the

dielectric diameter, are almost straight lines, similar to the

case of the homogeneously filled waveguide [11]. It is

recognized that the chart of Fig. 7 is for the case where the

dielectric extends all the way to the end plates (and hence

the modes existing in the resonators are only “pure
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modes”), yet it does give a quantitative measure of the

other modes, which would exist when L >1.

Finally, a comparison of measured results of the reso-

nant frequencies of several resonators (given in [2]) with

the computed values using (17) is given in Table II. The

agreement between the measured and computed values

using the technique presented above is quite good.

V. CONCLUSIONS AND DISCUSSIONS

The rigorous methocl presented for the computation of

the resonant tlequertcies of dielectric-loaded waveguide

resonators is shown to be capable of providing quite accu-

rate results. The method uses the mode fields of an infinite

dielectric-loaded waveguide with the same cross section as

the cavity; hence, the fields are quite similar to those

actually existing in the cavity, except within the regions

near the ends, in which ‘the normal TE and TM empty

waveguide modes are used. The cutoff wavenumbers pre-

sented in Table I should be useful in the initial determina-

tion of practical resonator dimensions in the types of

dielectric materials presently available. The method is ap-

plicable for both axially symmetric and nonsymmetric

modes. An example of a mode chart for a dielectric-loaded

waveguide resonator is given showing the variation of the

resonant frequency of various modes with the resonator

dimensions. This mode chart is found to be similar in

shape to the case of homogeneously filled waveguide cavi-

ties.

APPENDIX

ANALY~IC EXPRESSIONSFOR THE INNER PRODUCTS

OF (13a) AND (13b)

In the following expressions, kC represents the cutoff

wavenumbers of either a TE or TM mode in a circular

waveguide of radius b and full of a dielectric material of

relative permit tivit y C,z. All the other quantities are as

defined” in the text.

Let

{,k.—

1
—J (&la) J;(kCa) .
k:+{; n

.[(kf::;:~:)A-a,(B+c
(E, eTM)=k --ga) [(xA+y(B+D)]

cnc
—

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
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New Narrow-Band Dual-Mode Bandstop
Waveguide Filters

JING-REN QIAN AND WEI-CHEN ZHUANG

Abstract —A complementary relation between a dual-mode bandpass and

bandstop waveguide filter is found. Then a new idea for constructing a

bandstop filter is developed. Two triaf samples of bandstop filters are

constructed to demonstrate the principle.

NOMIiNCLATURE

Mij

el

z
R, Rn

z

I

Normalized coupling coefficient between

the ith and thejth loop.

Equivalent source in the first loop.

Impedance of each loop.

Equivalent loads in the first and last loop,

respectively.

Number of the loops in Fig. 1.

Loop current in the kth loop.

Voltage matrix for a bandpass filter cir-

cuit.

Impedance matrix for a bandpass filter

circuit.

Current matrix for a bandpass filter cir-

cuit.

Resistance looking into the source, char-

acteristic impedance.

Angular frequency.

Source voltage.

A diagonal matrix.

Coupling matrix.

Manuscript received March 25, 1983; revised August 15, 1983.
J. -R. Qian is with the Department of Electrical Engineering, China

University of Science and Technology, Hefei, Anhni, China.
W. -C. Zhuang is with Xian Institute of Radio Technology, Xian,

Shamii, China.

WL JC n+l

m

i;

e{, e;

R’, R;

E’

z’

I’

s’

t, r

t’, r’

A, A’

All, Al., A..

Nil, &,%

vn-*

J“LJ’L1
0,0’

~; ‘ ‘:

Normalized coupling coefficient between

the main waveguide &d the first loop and

last loop, respectively.

Turn ratio of the ideal transformer.

Loop current in the k th loop for a band-

stop filter circuit.

Equivalent source in the first and last

loop for a bandstop filter circuit, respec-

tively.

Equivalent load in the first and last loop

for a bandstop filter circuit, respectively.

Voltage matrix for a bandstop filter cir-

cuit.
Impedance matrix for a bandstop filter

circuit.

Current matrix for a bandstop filter cir-

cuit.

A diagonal matrix.

Transmission and reflection coefficients

for a bandpass filter.

Transmission and reflection coefficients

for a bandstop filter.

Determinant of Z and Z‘, respectively.

Co-factors of Z.

Co-factors of Z‘.

Determinant of the Z matrix with first,

last rows and first, last columns omitted.
A, All with R = O, respectively.

Arguments of tand t‘,respectively.

Relative frequency at the transmission

pole and zero for a bandstop filter.
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