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Modes in Dielectric-Loaded Waveguides and
Resonators

KAWTHAR A. ZAKI aND ALI E. ATIA, SENIOR MEMBER, IEEE

Abstract — Analysis of nonaxially symmetric modes in circular wave-
guides partially filled with high-dielectric constant material is presented. A
method for the accurate determination of resonant frequencies of any mode
excited in dielectrically loaded waveguide cavities is described. The method
is used to construct mode charts for dieleciric resonators. Comparison of
the resonant frequency calculations for several cases agrees closely with
measurements.

1. INTRODUCTION

HE RECENT AVAILABILITY of low-loss, temper-

ature-stable high-dielectric constant materials [1] has
generated increased interest in the utilization of such
materials in several microwave components. Major factors
in the use of high-dielectric constant materials are the
miniaturization of the components, lower manufacturing
and production costs, and the potential compatibility with
microwave integrated circuits (MIC’s) and monlolithic mi-
crowave integrated circuits (MMIC’s). One of the most
interesting applications of dielectric resonators is in high-
quality dual mode bandpass filters [2]. The design of such
filters requires the accurate computation of the resonant
frequency of practical resonator configurations. Although
several authors [3]-[6] have presented methods for the
computation of the resonant frequencies of dielectric reso-
nators excited in axially symmetric modes (i.e., TEj s or
TM;; modes), taking into account mounting structures
and enclosures, there is virtually no treatment of other
nonaxially symmetric modes in the literature. Properties of
these modes are required for successful design of resona-
tors, both when these modes are in the design, or when
they are potentially excited as spurious modes.

This paper describes a rigorous method for the computa-
tion of the resonant frequencies and fields of dielectric
resonators excited in nonaxially symmetric modes. The
analysis of axially symmetric and hybrid modes in partially
filled infinite waveguides is reviewed in Section II, since
the properties of these modes are required for the subse-
quent treatment of the resonant modes. The method of
computing the resonant frequencies of dielectric resonators
enclosed in circular waveguides is described in Section III.
This method is applied to construct mode charts for reso-
nators of typical parameters. Results on the computation
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of the resonant frequencies of several resonators are pre-
sented in Section 1V, together with a mode chart for a
representative case.

II. Mopes IN DieLECTRIC-LOADED CIRCULAR
WAVEGUIDES

This section summarizes the results of solving Maxwell’s
equations in a circular waveguide partially filled with a
dielectric material. The circular waveguide of infinite ex-
tent has radius b, and is axially loaded with a concentric
dielectric of circular cross section, radius a, and relative
dielectric constant €,, as shown in Fig. 1. The space
between the perfectly conducting wall of the waveguide
and the dielectric core is filled with another dielectric of
relative permittivity e, <e,. The electromagnetic fields
which can exist within this structure are (see, for example,
[7}1-19D): 1) transverse electric modes with no angular varia-
tion of the fields (TE,,, modes), 2) transverse magnetic
modes with no angular variation of the fields (TM,,,
modes), and 3) hybrid modes which have both axial electric
and magnetic fields and angular variation of the fields
(HE,,,, modes, m, n # 0).

Suppressing the axial propagation factor e ~** and time
variation factor e/, the solution to the boundary value
problem leads to the field components of the HE,,, modes
given below.

ForO0<r<a

E, = AJ,(§r)cosng (1a)
jopH, = adl (&r)sinng (1b)
E, = —;SZA Y&, J/(E7)+ %}{_‘51_’2 cosng  (lc)
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and

E, = ? [ﬂj—"%ﬂl + aélJn’(ﬁlr)} sin n¢ (1d)

1

2

JjopH, = ﬁz [P&-J—";(—SL) - ayélJn’(Slr)] sinng  (le)

1

jw,uH%=—?/-l—[ ki J(6r)+ ——"r(id]coanb.

1
(1f)

Fora<r<b
E, = AR, (§,r)cosn¢ (2a)
JouH, = adP,($,r)sinng (2b)
£~ 2 [erm 6+ an P Jeosne 0

2

_—4 [Y”Rnr(ff) - asz,,’(fzr)] sinng  (2d)

2 2
§
2
JjopH, = EZA [nsz;(g‘zr) —ayg‘zP,,’(frr)] sinng (2e)
2

aynp, (53 )]

JopH, = §2[ k28, R ($,r)+ cosng (2f)

where A4 is an arbitrary constant, and

g=ki+y: G=-(k3+v?)

ki = ‘rlk%’ ki = %kg, ki = wno€o
K, (§,r) 1, ($:0)— L($,r) K, (§,b)
K,(5,a)1,($:0)— 1,(5,a) K, (§,b)

K, (6r) L (56)— 1,(5r) K, (5b) ]
Kn(§2a)ln(§2b)— In(§2a)Kn(§2b)

1 1
U, = nYaJn(éla)[‘g; + zzaz]

[J (49) | Pn’(fza)]

P($r) = J,(&4)

R,($r) = Jn(ﬁla)[

-0
aV,

n

o=

V,=

n

51 fza

and J,(+), I,(-), and K, (-) are the Bessel functions, and
modified Bessel functions of the first and second kinds,
respectively.

The characteristic equation for the normalized radial
wavenumber x,, = £;a (from which the propagation con-

stant y can be computed) is
U’ +kga’V, W, =0 )

where

_|, Z&a) | Ri(a)
I/Vn_ €rl gl Erz {20
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The characteristic equations for the propagation con-
stants of the axially symmetric modes (TE,,, and TM,,,)
are given, respectively, by

W, = 0 (TE,,, modes)
V, = 0 (TM,,, modes).

The nonvanishing components of these axially symmetric
modes are given below.
TE,,, modes:

ForO0<r<a

H, = Ay (§i7) (4a)

E, =L 45i(8,r) (4b)

¢1 £1

I{r1 = ‘;—YAJO,(&")- (40)
1
Fora<r<b
§2J0'(§1a)
= — 5
sz AT~ §1Jo(§1a) PO(§2r) ( a)
. S(6a) 0.
E¢2 J A 5110(51 )P ({21‘) (Sb)
_ _—_‘Y_ JO,(éla) ’
Hrz— 51 Jo(éﬂ) PO(§2r)' (SC)
TM,,,, modes:
ForO0<r<a
E, = AJy(&r) (6a)
E,= =g 1 Ii(r) (6b)
Jjwe
H¢1=—§-— ATy (&,r). (6¢)
Fora<r<b
E, =AR0(§2r) (7a)
E,= At R 2(&,r) (7b)
H,,= ";‘21«)({2 ). (70)

1II. DIELECTRIC-LOADED WAVEGUIDE RESONATORS

Waveguide cavities are usually used in applications
requiring high-Q microwave resonators. Waveguide com-
ponents are generally bulky, heavy, and expensive to
manufacture due to the high precision required in their
machining operations. A means for the potential size re-
duction of the resonators is to fill them with a high-dielec-
tric constant, low-loss material. The reduction in the linear
dimensions of the components would be proportional to
\/Q . The metallic enclosure losses, however, would increase
considerably, since the surface area in which the currents
flow are reduced by €,. Alternatively, the enclosure con-
ducting walls can be made remote from the resonator
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Fig. 2. Diclectric-loaded circular cavity.

which would contain most of the fields. This allows the
ohmic losses in the enclosure walls to be significantly
reduced. The resonator fields and resonant frequencies in
this case are generally significantly different from what
would exist in a full resonator.

In this section, a method is presented for the accurate
determination of the resonant frequency of the structure
shown in Fig. 2. The cavity of radius b and length L has
perfectly conducting walls. The high relative dielectric con-
stant cylinder (¢, ) has radius a and length /, and is
supported by low relative dielectric constant support (e,,)
(e.g., foam). This support can conveniently be made as two
half-cups, between which the resonator is sandwiched. Al-
ternatively, the end supports can be of different dielectric
constant material (¢,,), as shown in Fig. 2.

To compute the resonant frequency, the structure is
divided into three regions: 4, B, and C, as indicated in Fig.
2. In each of these regions, the total fields are expressed in
terms of a linear combination of the appropriate normal
waveguide modes. The transverse electric and magnetic
fields are then matched at the boundaries z = + /2. This
results in an infinite set of linear homogeneous equations.
Resonant frequencies of the structure are determined by
equating to zero the determinant of a truncated subset of
these equations.

The normal modes in the end regions (A4 and C) are the
usual TE and TM modes in a circular waveguide [10].
Region B fields are those described in the previous section.
The angular variation of the fields of a particular resonant
mode must be the same in all three regions. The transverse
fields in each of the three regions 4, B, and C, which
satisfy the boundary conditions of vanishing electric field
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tangential to the end face z= + L /2, are expressed as

E,= Zaiéisinhy, (L/2+z) (8a)
H,=—Y ah,coshy,(L/2+z) (8b)

= ZE,(A,@“W + Be?) (9a)
H,=Y H(A,e 7"~ Be"*) (9b)
E.=) bésinhy,(L/2—z) (10a)
H.= Zb,ﬁ,coshy,(L /2~z) (10b)

where v,, é;, and fz, are the propagation constants, trans-
verse electric, and magnetic fields of the normal modes
(i.e., TE or TM modes) in the circular waveguide of radius
b, respectively, and y;, E,, and H, are the propagation
constants, transverse electric, and magnetic fields of the
(hybrid) modes in the dielectric loaded waveguide, respec-
tively. The y,’s are roots of (3), while £, and H, are the
fields given by (1) and (2).

Boundary conditions to be satisfied by the fields of
(8)—(10) are that the transverse electric and magnetic fields

be continuous at z=+1//2,ie.,atz=—1/2

E,—E,, H,-—H, (11a)
and atz=1[/2

E,=E., H,=H,. (11b)

Taking the dot product of each of the electric field
equations (11a) and (11b), with ¢, and the magnetic field
equations with 4, and integrating over the waveguide cross
section, using the orthogonality relations of the normal
modes [10], the following set of homogeneous linear equa-
tions result:

as;=Y (A,e""/*+Be W) E, ¢y (12a)
_ajcj=Z(Atev,l/2 Be—v.l/z) LB (12b)
bjsj=§;(Ae W2t B e (K, ey (120)
b, =Y. (Ae "2~ Be/2)(H, (12d)
where

(E.é =f‘ -éxds (13a)
A, h, =fS (13b)

S, -—smhyj(——zz—{), cj=coshyj(£'—2——l).

Analytic expressions for the inner product terms of (13a)
and (13b) are given in the Appendix.
The a’s and b’s can be easily eliminated from
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(12a)-(12d), leaving the system of equations only in 4,’s
and B,’s

>(X,4,+Y,B)=0 (14a)
Y (Y, 4,+X,B)=0 (14b)
where
X, =e"?c(E,6y+s5(H,h) (15a)
Y, =e "2k ey—s (A, k).  (15b)

The resonant frequencies of the structure are the roots of

the equation
X Y

a| ¥ T]=0 (16)
where the element values of the submatrices X and Y (X},
and Y,) are given by (15a) and (15b). In practice, the
infinite matrices X and Y are truncated at a certain number
N of normal waveguide and hybrid modes. Then the
frequency is varied and the value of the determinant in (16)
is computed for each frequency. The frequencies giving
zero value of the determinant are approximations to the
resonant frequencies. The size of the determinant ¥ can be
varied, and the process can be repeated to establish the
convergence.

A flow chart of a computer program that implements
this procedure is shown in Fig. 3. This program uses the
bisection method to compute the resonant frequencies,
once the upper and lower bounds on the values of the
frequencies are known. Such bounds are ecasily estimated
using the dielectric-loaded waveguide model shorted at
both ends with lengths / and L for the upper and lower
bounds, respectively.

The frequencies obtained by this method are the reso-
nances of the structure in various modes. Thus, “mode
charts” can be constructed which show the variation of
various resonant frequencies with the parameters of the
resonator (e.g., diameter and length of the dielectric, diam-
eter and length of the cavity, etc.). When only one hybrid
and one normal waveguide mode are taken (i.e., N=1),
(16) reduces to

tanhyl = —sinhy(Z —1)
<I::’eA> coshZY(L_l) + <I{’h> Sinleu
(LR 2 (E.é) 2

(17)
This equation gives the exact values of the resonant fre-
quencies when L =/,

An interesting interpretation of (17) can be made in a
simple way by considering the “equivalent circuit” shown
in Fig. 4. In this figure, the transmission line of length /,
characteristic impedance Z,, and propagation constant y
represent the hybrid mode in the loaded waveguide, while
the lines of lengths (L —/)/2, characteristic impedances
Z,, and propagation constants y represent the normal
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Fig. 4. Equivalent circuit of a dielectric-loaded resonator.

2

waveguide mode, terminated in short circuits at their ends.
Using the transmission-line equations, it can be easily
shown that the resonant frequencies of the circuit of Fig. 4
are given by (17), provided that

Z (L8 (18)
Z, (H, k)
IV. RESULTS

Accuracy of the computer program developed for the
solution of the characteristic equation was verified by using
the program to find the roots of the equation withe, =¢,,
which corresponds to a completely full waveguide. These
roots (£,b) agreed with the TE and TM normal mode
wavenumbers (i.e., roots of J/(x)=10 or J, (x)=0) to six
decimal places.

Properties of the modes in an infinite waveguide axially
loaded with a dielectric are first explored by investigating
the characteristic equation (3). Since the highly tempera-
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Fig. 5. Effect of the waveguide radius on the HE,; mode cutoff wave-
numbers. o

TABLEI
RoOTS OF THE CHARACTERISTIC EQUATION FOR TE,,,,., TM,,,
anp HE, ,, MODES

nm

Mode Root Mode Root
HEII 2.2667 HE23 6.6963
THy, | 34542 HE,, | 6.7949
HE21 3.6865 TEOZ 7.0296
TEOI 3.7863 ”HE14 7.1294
HE12 4.4053 HE32 8.0237
HE13 5.3516 HE24 8.2617
HEZZ 5.8555 TM03 8.4158
TM02 5.8988 HE15 8.5313
HE33 9.3281‘

a = 0.39", b = 0.5", koa = 0.8384"

ture-stable dielectric materials commercially available have
relative dielectric constants in the range 35-40, a typical
value of €, = 37.6 is used in the calculations. The first few
roots (§,a) of the characteristic equation (3) for a typical
set of parameters are given in Table I. Variation of the
cutoff wavenumber (£,a) of the hybrid HE;; mode with

the ratio (b/a) is shown in Fig. 5. As seen in this figure,

when b/a =1, the waveguide is completely full of dielectric
and the mode is TE;; with cutoff wavenumber 1.841. As
the waveguide diameter is increased, the cutoff wavenum-
ber of the HE,, mode increases rapidly and peaks around
(b/a)=1.07. In the range (b/a)<1.3, the effect of the
conducting walls on the fields is significant due to their
proximity to the dielectric. For (b/a)>1.5, the cutoff
wavenumber of the HE,; mode is virtually independent of
(b/a), indicating - the fields are almost entirely con-

centrated within the dielectric core, and only weak evanes- -

cent fields exist near the conducting walls. This is also
illustrated in the w —f djagfam of Fig. 6 for the hyrid
HE,; mode. Thus, in the design of the HE,, mode resona-
tor with relative dielectric constants in the range of 35-~40,
the waveguide radius b should be generally chosen greater
than 1.5 X the dielectric radius a to minimize the waveguide
conductor loss.
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Fig. 7. Mode chart for a diélectric—loaded waveguide resonator.

TABLE I1
COMPUTED AND MEASURED RESONANT FREQUENCIES OF SEVERAL
RESONATORS
" Frequency
2 b * L erl (Measured) (Computed)
MHz MHz
2394 | W5 ] W315 | .6 37.6 3368 3371
.341 | .5 ] .319 | .83 | 37.25 3928 3930
.315 | W5 | .272 ) .56.1 37.6 4196 4192
.268 { .5 | .220 | .48 | 38.2 4994 5001

A mode chart for a dielectric-loaded cavity of the same
pairameters given in Table I, with / = L, is shown in Fig. 7.
The plots of (fD)? versus (D/L)?, where I} =2a is the
dielectric diameter, are almost straight lines, similar to the
case of the homogeneously filled waveguide [11]. It is
recognized that the chart of Fig. 7 is for the case where the
dielectric extends all the way to the end plates (and hence
the modes existing in the resonators are only “pure
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modes”), yet it does give a quantitative measure of the
other modes, which would exist when L > [. .

Finally, a comparison of measured results of the reso-
nant frequencies of several resonators (given in [2]) with
the computed values using (17) is given in Table II. The
agreement between the measured and computed values
using the technique presented above is quite good.

V. CONCLUSIONS AND DISCUSSIONS

The rigorous method presented for the computation of
the resonant frequencies of dielectric-loaded waveguide
resonators is shown to be capable of providing quite accu-
rate results. The method uses the mode fields of an infinite
dielectric-loaded waveguide with the same cross section as
the cavity; hence, the fields are quite similar to  those
actually existing in the cavity, except within the regions
near the ends, in which the normal TE and TM empty
waveguide modes are used. The cutoff wavenumbers pre-
sented in Table I should be useful in the initial determina-
tion of practical resonator dimensions in the types of
dielectric materials presently available. The method is ap-
plicable for both axially symmetric and nonsymmetric
modes. An example of a mode chart for a dielectric-loaded
waveguide resonator is given showing the variation of the
resonant frequency of various modes with the resonator
dimensions. This mode chart is found to be similar in
shape to the case of homogeneously filled waveguide cavi-
ties.

APPENDIX
ANALYTIC EXPRESSIONS FOR THE INNER PRODUCTS
OF (13a) AND (13b)

In the following expressions, k, represents the cutoff
wavenumbers of either a TE or TM mode in a circular
waveguide of radius b and full of a dielectric material of
relative permittivity e, . All the other quantities are as
defined in the text.

Let
A=nJ,(¢a)J,(k.a) —154-%
1 §2
P EAGIIRACST))
&
b0, (kea) 1 (810) = kedy oy (k@) gy (§19)
+ -
< 1
c=21 7 (ka)Prtsa)| 1+ =51
LI K2+
6ok, ,
g p (G050
D=5 (k) Ry (tya) 1+ =5
R B
_ Sk, ,
k?+§22"’n(£1a)‘]n(kca) .
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Then
(E,érg)= Jn(;ja) 1/ kfa?: = [v4+a(B+C)]
<H’ ﬁTE) - qun_(l](;ca) kczagTi n?
{(—h"fg*k%gf A—ay(B+C)
&g+
(E, ) =%[m+y(3+p)]
(H, hy) = ﬁm [ - ayA+ k2B - K3D].
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New Narrow-Band Dual-Mode Bandstop
Waveguide Filters

JING-REN QIAN anp WEI-CHEN ZHUANG

Abstract — A complementary relation between a dual-mode bandpass and
bandstop waveguide filter is found. Then a new idea for constructing a
bandstop filter is developed. Two trial samples of bandstop filters are
constructed to demonstrate the principle.

NOMENCLATURE

M;; Normalized coupling coefficient between
the ith and the jth loop.

e, Equivalent source in the first loop.

VA Impedance of each loop.

R,R, Equivalent loads in the first and last loop,
respectively.

n ~ Number of the loops in Fig. 1.

i ~ Loop current in the kth loop.
Voltage matrix for a bandpass filter cir-
cuit.

Z Impedance matrix for a bandpass filter
circuit. ,

1  Current matrix for a bandpass filter cir-
cuit. ,

R, Resistance looking into the source, char-

' acteristic impedance.

w Angular frequency.

€ Source voltage.

) A diagonal matrix.

M Coupling matrix.
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My, M, Normalized coupling coefficient between

n n+l
the main waveguide and the first loop and
last loop, respectively.
m Turn ratio of the ideal transformer.
i Loop -current in the kth loop for a band-
stop filter circuit.
ef,e;, Equivalent source in the first and last
loop for a bandstop filter circuit, respec-
tively.
R, R, Equivalent load in the first and last loop
for a bandstop filter circuit, respectively.
E’ Voltage matrix for a bandstop filter cir-
= cuit.
z’ Impedance matrix for a bandstop filter
circuit.
I’ Current matrix for a bandstop filter cir-
cuit.
S’ A diagonal matrix.
t,r - Transmission and reflection coefficients
for a bandpass filter.
t,r’ Transmission and reflection coefficients
for a bandstop filter.
AN Determinant of Z and Z”, respectively.
Ay, Al,,, A,, Co-factors of Z.
11 A% A’ Co-factors of Z".
V,_s Determinant of the Z matrix with first,
) last rows and first, last columns omitted.
V,,V,_1 A, A,, with R =0, respectively.
6,0’ Arguments of ¢ and ¢/, respectively.

w, Relative frequency at the transmission
pole and zero for a bandstop filter.
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